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MOSER-LIKE TRANSFORMATIONS USING 
THE LIE TRANSFORM 

Leo Michelotti 

Abstract 

We present the Deprit-Hori-Kamel recursive tlgo- 
rithm far carrying out canonical transformations 
that eiiminate non-secular terms of a Hamiltonlan. 
The method is illustrated in the context of accel- 
erator theory by application to three sample 
problems. 



How Alexander wept when he had no move 
worlds to conquer, everybody knows --- OF 
has some reason to know by this time, the 
matter having been rather frequently 
mentioned. 

--- Charles Dickens, 
Bleak House (1853) 

1. INTRODUCTION 

Like many other good ideas, the one which accelerator physicists 

call “Moser’s ‘cransformation”i was in fact developed and studied in 

some detail by Poincare. According to .Jupp ip.413), 

“In his Methodes Nouvelles de la tlechanique Celeste, Poincare (1893) 
describes techniques to ‘eliminate’ successively non-resonant periodic 
terms from the Hamiltonian of a dynamical system. Each elimination is 
achieved by means of a canonical transformation of variables, which is 
constructed using a generating function depending upon the old angle 
variables and the new momentum variables. After all the periodic terms 
have been removed in this way, the final Hamiltonian is purely 
secular. ” 

The method was modified by van Zeipel in 191.5 and is called. by the 

rest of the world, the “Poincare-van Zeipel procedure”. Even so, it had 

antecedents. Giacaglia (pp. 55,47) writes, somewhat ambiguously, 

“It is a recognized fact. although several times not mentioned, that 
the averaging methods were introduced by Lindstedt (18821, though it is 
not clear whether his ideas stemmed from the efforts of Euler i1750) in 
the solution of the problem of motion of the moon. In his celebrated 
‘Methodes Nouvelles il vol. 2, CPoincarel developed a canonical analog of 
*~*******1**********3 

l./But not the superconvergent procedure 
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Linstedt’s method which, even a*ter a superficiai ioolc, proves to be a 
very eIaborate generalization. However; it is obvious that the main 
idea of Poincare’s development comes from Delaunay and some remarks of 
Tisserand on Delaunay’s Lunar Theory CTheorie du Mouvement de la Lune, 
18671. ” 

This work of Delaunay’n cuiminated an effort that appears superhuman by 

modern standards. Deprit, Henrard, and Ram ip. 15b9) state that 

“Delaunay worked at his theory without any assistance, by hand, for 
some 20 years continuously (sic); his literal calculations coveP two 
volumes in quarto of 400 pages each; he alone proat’reati them.” 

Aithaugh he is not frequently mentioned outside celestial mechanics, 

Delaunay’s influence on the physics of his age was considerable. Among 

his other accomplishments, he seems to have been the one who invented 

action-angle variables. According to Lanczos ipp. 254,245), 

“Delaunay invented a beautiful method for treating separable systems 
which satisfy the additional condition that the stream lines of the 
separated phase planes (qkpp4) are closed lines. He considers a 
canonical transformation Whose position coordinates are the “action 
variables” Jk defined by the areas enclosed by the stream lines. The Jk 
are constants for the actual motion while the negatives of the 
COnJUgate mOmentaj the “angle variables” WL change linearly with the 
time t. The partial derivatives of E with respect to the J; give n new 
constants which ape the frequencies J; of the motion. At first 
sigh,t Delaunay’s theory seems rather technical and involved. Yet it was 
this procedure which opened the eyes of physicists to the power of 
the Hamiltonian methods. ” 

Somewhere in history this association was reversed. tie now think of the 

action variable as the “momentum”, although a vestige of the original 

ordering may be contained in the terminology “action-angle”, rather 

than “angle-action”. 

It has been remarked by many authors that the Poincare-van Zeipel 

procedure suffers From a serious disadvantage. Because the generating 



function is written in a mlxed ~system of variables, the transformation 

from the new, “averaged’i variables to the old, “exact” variables is 

only defined implicitly. Practically, then, carrying out the 

transformation to better than lowest order is accomplished more in 

principle than in practice. Beginning with a theoretical paper by Hori 

(196.&z), Lie transforms provided a new, alternative “averaging’ 

procedure in which transformation equations ue?e explicit and could be 

developed recursively to any order. Further, the algorithm was written 

completely in terms of nested Poisson brackets, explicitly providing 

invariance under canonical transformations and thereby assuring that it 

could be implemented without alteration using any convenient system of 

conJugate variables. Finally, the new theory possessed the almost 

unique distinction of being “not known to Poincare, a thing hard to 

discover in perturbation theories” , a 
indeed in dynamics as a whole. 

That alone would seFve to make it exciting. 

Although it is true that the current renaissance in Lie 

transforms can be traced to Hori. it was not until Deprit’s work, three 

or four years later, that the world took notice that something new had 

come on the scene. Working independently, Deprit (1969) wrote his own 

algorithm. andi in 1970, he and his collaborators linked it to a modern 

computer algebra program (MACSYMA) and reproduced Delaunay’s monumental 

calculations. (The dramatic result of this double checking was that in 

RI***Q*Q*********Q** 

2. /Giacaglia, p. 144. 
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twenty years of effort Deiaunay had made only one mistake --- amounting 

to writing 147-90+? = 46 --- at the 9th order, ail other errors 

resulting from its propagation through other terms. ) Deprit’s method 

was studied further by Kamel and Dewar, and recently it has been used 

in plasma physics by Dewar, Kaufman”, LittleJohn, and Gary. 

Also using Lie operators in plasma physics, Abarbanei recently 

has exhibited perturbation series free of small denominators (1980) and 

has worked on calculating diffusion in phase space for chaotic systems 

(1982). His ideas are exciting and may prove useful for accelerator 

problems‘ but we shall not consider them here, as they have not yet 

been crystallized into an algorithm. 

In accelerator theory, Dragt and his coworkers. using a different 

approach> have been systematically exploiting Lie transforms fOl- 

constructing transfer maps through accelerators with nonlinear 

elements. A version of PROGRAM MARYLIE, the first fruit of their labor, 

is now available for general use and is rapidly gaining acceptance by 

accelerator physicists. Although the underlying theoreticai framework 

of this program is that of the celestial mechanics and plasma physics 

work, the application is very different: MARYLIE constructs a 

symplectic mapping which is to be iterated while the others generate an 

averaged hamiltonian which operates in continuous time. 

When the dynamics ape integrable. Deprit’s algorithm is a simple, 

systematic procedure for generating invariant KAM surfaces to any 

desired order. These surfaces provide a useful tool for solving the 
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dynamic aperture problem when the fundamentai iimitation comes from 

nlstortion of elliptically cross-sectioned emittance tori. 3 
Of courser 

non1 inear systems are almost never integrable, and in lieu of mayor, 

unforeseen breakthroughs, fast numerical tracking algorithms (coupled 

with good interactive graphicsi will be essential for detailed 

dynamical Studies. Even in such cases, however, it may prove useful to 

strike d balance between “analytic” and “numerical” methods so as to 

increase the useful information obtained per computational cycle. As an 

example of this, consider numerical quadrature, where it is frequently 

good practice to smooth the integrand by a JUdiCiOUS choice of 

variables before entering a numerical procedure. By tailoring the 

problem to the algorithm in this way one can sometimes achieve 

increased accuracy with fewer computational steps. 

In this memo we shall consider briefly Deprit’s algorithm in the 

context of accelerator theory. The method is presented in Sec.2, and in 

Sec. 3 It is appiied to three simple, familiar examples by way of 

iilustration. Sec.4 contains a few irresponsible concluding remarks. 

3. /For example, jee F. Willeke. “Determination of the Dynamic Aperture 
of Circular Accelerators by the Perturbation Theory Method”, Proc. 
SSC Workshop, V. of Michigan, Ann Arbor. Dec. 12-17, 1983. 



2. PERTURBATION THEORY AND Ti-iE LIE TRANSFORM 

In this section the symbols L, z3, and u will denote a generic 

set of 2N conJugate phase space variables. 

z, z 1 * u = (t) or (s) or whatever 

We ape confronted with the problem of solving .the presumably 

complicated dynamics generated by a Hamiltonian H(z;b; & ). 

a!-/ (z*-;d; i’) 
3 

Because we look ,toward applications to circular accelerators the 

independent variable 4 is taken to be cyclic; H is periodic in @ with 

period 27~. This attribute is not essential, however, and in most 

applications the independent variable is interpreted as Inon-cyclicj 

time. The variable E is a control parameter. the “small parameter” on 

which the perturbation series will be built. Everything must behave 

smoothly in a neighborhood of E=O; no catastrophes aFe allowed in the 

phase space region of interest. In particular, the limiting hamiltonian 

HO = lim H 
c+o 

is well defined, and its orbits ape presumed known 
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Although an orbit of H may be very complicated we assume that its 

behavior can be averaged, in a sense to be made more precise. The 

exoectation is that this “averaged” orbit will be easier to solve, OP 

to study. Its development also is governed by a hami ltonian. at least 

say K. 

d,z 
d7 

_ 1. gb-;&d 
dZ 

Further, by slicing state space at constant values of 9 we get a one- 

to-one correspondence between points L on the K-orbits and points z* on 

the H-orbits. This mapping L -.+z*, which Dewar (19783 calls the 

“clothing transformation” in analogy with renormalired quantum field 

theory. is needed to solve the exact dynamics from the averaged 

dynamics. 

A Lie transform gets at the clothing transformation by defining a 

new dynamics using & as the independent variable, iwith 4 held fixed. 

For a hamiltonian rystem. Its equation of motion is Written 

The fundamental problem is to find a generating function S such that if 

we apply the boundary condition u(E =O) = L, then UC&! = z*. 

In perturbation theory S is constructed by expanding everything 

in powers of E about & =O. The algorithm presented below has been 

derived 07 explained in various ways by Deprit, Kernel, Nayfeh, Gary, 
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anti others. The tieveiopment in Nayt’eh is recommended, aithough perhaps 

less formally elegant than the others, in that he treats Hamiltonian 

dynamics as a special case of the more general problem of solving first 

order ordinary differential equations. We will lay out the procedure 

without derivation and then describe briefly two methods for solving 

the linear partial differential equation which it spawns. 

2.1 Recursive algorithm for hamiltonian systems 

Begin by expanding H. K, and S de power series in E. 

i-i =F $Hn r K =r $Km, S =e ++, 

(I---C “=t n-0 

The func 

by order 

tions i-i, are known; it is required to find all ‘I;,, and S, order 

The initiai step is trivial. 

0th order: Kg = Ho 

Now, define an operator D, acting on real valued functions over 

state space. 

Df = af/d& + i f, Hg I 
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where < , :b 1s the Foisson bracket, 

<a,b) = aa.. l . 
z’or 

zig- 

The first order equation is then written as follows. 

1st order: DS, + K, = H, 

There are two unknown functions. K, is determined by requiring a 

bounded solution for S,, unbounded solutions doing violence to the 

convergence of a perturbative series. (This will become clearer in 

Section 3 when we consider some concrete examples. ! 

For n >/ 2, the nth order equations ape constructed as follows. 

(iai 

(lb) 

(lci 

K 
‘1 

= i K., S, 3 
I 

Kij = {Kj,Si} - 

(id) 

(ie) 

For 

by evalua 

example, at the fourth order, we first find K,31 K,. 

ting the Poisson brackets of functions constructed at lower 

and KS,, 
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orders, according to the prescription o+ Eq’s.ild,iei. These are then 

out together to Germ sz. xtis built aimilarly~ and the two are 

combined with H, to ,urite the partial differential equation. For future 

reference and in order to see the pattern that emerges,the sequence of 

steps through sixth order 31-e displayed below. 

0th order. K, = l-t, 

1st order. OS, * ti, = j-d, 

2nd order. K,, = (fi, > Sal 

DS;+ M,= H,t{H,,S,)+ K 4, 

3rd order. K,., = {q , s, ,/ 

K., = (K - Kit , S, ) 

DQ- K, = I-), +{I-I1,q .t r(H,, s,) 

+ K,, .t 2 ii,, 

4th order K ,‘3 = {K~3 ,~ 5, \ 

K., : IK~,s~} - {K12,S1j 

K,, = {K1,S3} - 21Kll,S21 - IK~~,s~} 

lX,+K., = If, + {H,,, SJ + 34.4, s,j 

+ 3 0-L S,.t + Kg, 

+3K, + 3K,3 

(if) 

(lgi 

(ihi 

(iii 
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5th order: K14 = cK4,S1> 

K23 = iK3,S2} - {K13,S1} 

K32 = {K2,S31 - 2fK12, S,} - {K22rS11 

K41 = {K1,S4} - 3{Kll,S31 - 3{K21,S21 

- {K31rSl} 

DS5 + K5 = H5 + iH4,S1} + 4{H3,S21 + 6{H2,S31 

+ 41Hl,s41 + K41 + 4K32 + 6K23 

+ 4K14 (1 j) 

6th order: K15 = cK5,S$ 

K24 = tK4rS2} - tK14,Sl} 

K33 = {K3rS3} - 2fK13,S21 - {K23,Sl> 

K42 = k2,S4} - 31K12,S31 - 3{K22,S21 

- {K 32%' 

K51 = cK,,S,} - 4{Kll,s41 - ~~K~~,s~I 

- 4{K 31tS21 - IK41,Sll 

DS +K 6 6 =H 6 + 'H5' 1 S 1 + 5{H4,S2> + 10{H3,S3> 

+ lO{H ,rS,l + 5{Hl,s51 + K51 + 5K42 
+ 10K33 + 10K24 + 5K15 (lk) 
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Storing the intermediate array ii, ” % requires a memory that grows 

auadratically with the order of the calculation. It is possible to 

redesign the algorithm for linear growth by making the calculations in 

each order call upon previous solutions only, not upon intermediate 

results. To this end it is useful to introduce a frequently used 

ooerator notation. To any real valued function f over phase space we 

associate the operator Lif), itself acting on real valued functions 

over phase space, defined by 

L(f)g = ig.f> 

These operators ale derivations, 

L(f)gh = (L(f)gjh + giLif)h) 

and in fact ape called Lie derivatives. 4 Note in passing that 

D =a/a4+ LiH,). 

Now introduce .the operators ~3, defined recursively as follows 

W./For whimsical peasons of his own, V. 1. Arnold calls them fisherman’s 
derivatives. Dragt’s unique notation for 'L(f)' is ‘: f: '. 
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It is easy to prove by induction that 

Km ti--m= 0,K n-m 
, 

Making this substitution in Eq. (1~) leads to the new, desired form. For 

example, at fifth order, and with the condensed notation L,:= L(S,,.J. 

+ 6 (L 
2 

- L1)K3 2 

+ 4 CL3 - L (L 2 
- 12 Ll) - 2L2Ll)K2 

+ 1 CL4 - Ll(L3 - L1(L2 - Lf) - 2L2L1) 

-3L2(L2 - + - 3L3L1)Kl 

Although conserving memory, this form of the algorithm wastes 

time by duplicating previous, computations. For example, the function 

2 
(L2-Ll) K2 

Y 
which appears in the expansion for'xSwWas previously 

K computed as the second term appearing inx,, . 

Solving these equations yields the averaged hamiltonian and the 

generating function, but the dressing transformation itself must still 

be written out. That also is done systematically, order by order. 



:* = ;f: $ztiiij+i 

r, = c 

0th order: zEiz;+) = I , 

ist order: r,iz; dj = i-dS,,iz;+)/& 

For n > 2: 

Ln = 1. 2 :,?(n/)z,,,+,, where 
m = , 

2 /. . 
‘J 

= iz.,s,> 
J 

i-1 
z. P 

‘JJ 

i2aj 

(2b) 

(2c! 

(2d> 

(2ei 

i2fj 

This looks very much like the algorithm for constructing the S,‘s with 

the important difference that only one S, appears in Eq. (le) while all 

previously constructed S,‘s appear in Eq. (2fl. 

2.2 Constructing solutions 

To find the functions S, we must solve partial differential 

equations of the form 

DSJz, + j = rhs,,iz, 4 ). (3) 

Two methods will be considered: integration along orbits and expansion 

in eigenfunctions. 



2.2. i Integration along orbits. 

The differential operator D is, oy Hamilton’s equations, the 

total derivative along the direction of the local k’o-orbit. Solutions 

to the partial differential equations can be obtained therefore by 

integrating the inhomogeneous term along these orbits. This approach is 

actually an instance of the method of characteristics. 

Let %(zi#, @; 1 be the orbit that passes through L at $= 4;. 

%u L j Q ) 4;) a!&(~;+> 
w = .g* au 

I w= 9+(';4z$;,> 

‘3 ( zi+-i,d;) = Z 

We then have the following 

ASSERTION: The general solution to the partial differential equation 

(3) is 
& 

S,t.z,c/d = Adi’ rAsq (gjz;&$), 6’) 

+ 3.h Y CoMSt3ht 

OF 

The proof of this is easy and will be omitted. There is about 

this integral a whiff, albeit subdued and disguised, of resonances and 

small denominators. FOT, suppose that 
9 

possesses a period in 
# 
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commensurate with Z-rr. Then the integrand would be a periodic function 

of $I. Jnless K, be chosen to annihilate the integral over one period, 

the solution would grow indefinitely with increasing $. 

The arbitrary ‘constant of Ho-motion’ is fixed by demanding that 

the solution have the appropriate 27~ periodicity in *$. in the 

particular case 

Jqf,J +) = QJ_) , 
PF 

$&I 2 - 
a?! 

the solution is specialized to 
1 

y)\Y > JY+) = $&h..( r-k s(J), (d&),J; 4’) 
(4) 

9 ! UK \ _u-- c;(3)+ , ?_ ) 

where ‘func’ represents that function which will make S, periodic 

2.2.2 Expansion in eigenfunctions 

Like all linear operators. D possesses eigenfunctions. By using 

these as a basis. the differential equations (3) can be expanded and 

solved algebraically. We will specialize considerations of this section 

to the unperturbed hamiltonian 
5 

~**************4*4** 

5./A small warning: this violates the crucial hypothesis of the KAM 
theorem, det hess Ho # 0. 
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i-to(Y,;l;~~~) = +J_ ,- 
OUT operator D then becomes 

D= a .+ +&- 
w 

acting an the space of functions periodic in @ and in all the 5.‘~. 
I 

The eigenfunctions of D on this space are the complex exponentials 

‘B. ap -; (m& + pg = ~+-rl cy. 17).‘q3; (rnc&+ p.t) 

where m is an integer, and p is a list of integers. (Note that D is an 

anti-Hermitian operator. ) Written in component form, Eq. (3) becomes 

+w+- z.,T) ~eim~p(~J -5 rhs rl; 111 ,iJ) 

where we formaily acknowledge that the components depend on the action 

variables, J. - 

For all m and p that satisfy the resonant condition m +-9.p = 0 -- 

we must choose the (m,pf component of K, so that rhs n;m = 0. Even in 
P 

the absence of non-trivial resonances, we must at least choose the 

average term K 
*; on 

according to this criterion. 
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To use this representation in the solution aigorithm that was 

laid out in Eq.ill and Eq.i2), we must obtain the components of Poisson 

brackets. Since we will always be dealing with polynomials in the 

action variables, it is sufficient to consider brackets of the 

following form. 

{J," h,d, , Jb p p ,a i;,, 
a-1 b-1 

= i J, Jx > C’J, fi - 3 J,i flf ) '.m,g, j--F- 
<MIF!) 

The notation x ,-' 
<m g> 

signifies a sum carried out over all m',m",p',p" such 
- - 

that m’+m”=m and p '+p"=p. For one dimensional problems this expression 
- - - 

simplifies to 

iJ 

atkv-i 
2 (bp'-yq -f' I _ 

<'m I p > 

m p' p$d (5) 
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3. 
-.. 
txwlPLES 

To illustrate the Lie transform perturbation series, we shall 

look at three sample problems in one dimension: (ij zeroth harmonic 

sextupole and octupale terms (to 4th order). (2) quadrupole field 

errors (to 2nd order), and (3) arbitrary sextupole and octupole terms 

(to 2nd order). Our purpose here is certainly not to study these 

systems --- and we will by no means make a thorough Job of them --- but 

only to use them as settings for realizing Deprit’s algorithm. 

3.1 Zeroth harmonic sextupole and octupole terms. 

The hamiltonian Gor an accelerator with zeroth harmonic 

sextupoles and octupoles can be expressed in action-angle form as 

follows. 

3/z 

H=l/J+cJ 5 .ti 1-1 3 .\/ + +<.y JZ.clV 

That is. 

H, = VJ 

I-I, = J3’= Sih3\( 

= J3” ($ :3;ny - +- s;n 3)- ) 

l-f,= K J” s;n “d 

= ,<y(&+ LOSZY +$ ws qd ) 



Introduring the parameter K is a device ior expressing an intrinsically 

two-parameter problem in a one-parameter formalism. For this to be 

legitimate. K should not be too large. 

The first order equation to be solved is 

$- +&S, + K, = J3’z(+;n~{- +in3-q 

Its solution can be written by inspection, but we will use traJectory 

integration Just to illustrate the method in this simple case. First of 

all, there is no growth term --- that is, neither ;infnor sin 3< has a 

non-zero average --- so we must choose K, = 0. Then using Eq. (4) we 

write the solution for S, as 

S, = Sd~‘II~s;njy.t31(~i_~)) --+,3(d+d7/q~‘--qQ)3 x J3” 
PC -t If~.L1*)C ( t- - qi J 3 5 

= (J""/,,>C-;(Ms\' - cas(Y-++$#J) 

+kC CCS3Y - -cv-9+ +&,,)-J 

.+ cwlc tr-wcl, 3) 

The arbitrary Function ii now chosen to cancel the unwanted terms and 

to make S, periodic in C# es well as )‘. We ape left with 
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s, = ( J"~/J jE- 5 ms \f + & cos sy J 

At the second order, because K, = 0, Eq. !lg) is simplified to 

G- f $$>% + K, = l-l,+ {I#,,&)- (6) 

The Poisson bracket is evaluated easily 

{++,) s, ] = & JL (- 5 -I- 5TLc%3Y 2csb + 3sab73Y-s;nf > 
=(3dZ/93;)(-54 ,$ CQS4f + COSZY) 

KZmust be chosen to cancel the average term on the rhs of Eq.(6), 

because the presence of such a term would make S, grow without bound. 

K, = - u2/v) ( g - $-VK ) 

The solution for S, is written by inspection 

s, = J=[-[& -+nLT + &-& -f- (4)=.,- M 

Pushing on to third order. we first note that since ii, = K,, = 0. 

then KI, = 0. The evaluation of K I= is straightforward. 



K12 = & (J5'*/U2) ( 2 - UK ) ( 3siny - sin3y ) 
23 

The other two brackets that we need ape rvaiuateti beiow 

-I- (3+</16 ) s;n 3’~ 

- -!- (,02.~K - 1357) 118 s1.n -f II 

?utting these into Eq. ilh) and solving yields the result. 

53 = (/'*//33 [.A (23 --‘h) hs 5-y 

I- -&- (-5- 64 cxz.3~ 

- -$ (31s - ,286.,,~) bsf 1 

Note that there are no average terms to be cancelled, and thus K.,= 0 

To see the next contribution to K we must go to fourth order. 

The terms K,j and K3! vanish. The evaluation of Kx2is tedious 

but straightforward. We will only give the result here. 
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K22 = (J3/‘v3) [C-s + & UK )COSG~ 

+c g+s 3 
“K - n (UK) 2 )cos4y 

225 75 --- 
+ ( -256 128 VK + $ (UK) 2 ) cos2y 

+ ( 
75 
3-i -g VK)] 

The two nonvanishing Poisson brackets which contribute to ;ourth order 

al-e as follows. 

(t-f,, 3,) = J30 5% L-k (Zzw-99) casdr’ 

- -$ (22wt 33) (l-OS +Y 

t 4 (lJYr<-- IS-) tis2Y 

- & (3vajK -45) ] 

{i-t,,S,\=(J’/J’)[ q~(3a~v~-47)eosbY 

- ,~(6.Ve7)wfY 

- 5&(72gT’K - 793) I;os IY 

+ Z(623~ -6‘7)7 
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Now choose K 
4 

to cancei the average part of Eq.<iij 

= - 675 (J3/“‘,[+$ - 32 51 
“K + z (VK) 

2 

7 

it is ieft to the reader to finish the calculation for S,, from the 

expressions already given. 

Putting the pieces together. then. the averaged Hamiltonian to 

fourth order can be written: 

c<(,,)=~J[?-t(~-~ 8 UK ) ($",' 

1 
Q 

2f6- 
-2L) z- 47r 33 +'K + 
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3. 2 Guadrupoie field TTI-OI-5 

The application of Deprit’s algorithm to this linear problem is 

going to be cumbersome and obscure in comparison to the elegant 

treatment of Courant and Snyder. which takes no more than a few lines. 

This is not surprising: linear problems ape solved best by linear 

methods. Again, OUT purpose is only to observe the working of an 

unfamiiiar algorithm within a familiar setting. 

Because we’ll want to compare the results obtained in this 

section to known, correct answers, let us start a little further back 

cnan in the previous section in order to establish the notation. Assume 

a hamiltonian of the form 

J-b ,fyE;S) = +( p’= ,+ Gcsw) + E .+ i+ x2 

The functions G(sj and rC’(sj are equi-periodic. We now iii make a 

Floquet transformation using the betatron functions 
rds 

associated with H 

pand v=y$ = j--ir 

0, 
and (2) change the independent variable from s to 

The transformation equations ape given by 

x = r2Jpt+J]“=s;wY 

p = rz J /p (+)]“= (z&- ~$f”’ sI’nI’- + cos 1( ) 
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and the new form of the hamiltonian is 

where gi#(s)j = risk. Because we ape dealing with a purely linear 

system we expect that 

KLO = (t) f A$) 3 = (9 + A#’ -+ A+‘=’ + . ..) J 

where AU’“‘= i3( ck). We shall evaluate AS through second order. 

To ease the notation. define the function 

F t+ ; $0) 3 $46y ; g(+‘) ff(&) 
40 

The parametric dependence of F on 54 will frequently be suppressed. 

Reexpress the hamiltonian in terms of this function 

cl., = J $ ( I -- as ZY ) 
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in writing the first order equations, it in convenient to define 

s,q ‘5, cv, 4~‘) -au) K, = Jk,<Y,d>j 
50 that Eq. ilfj becomes 

c Ptt\&)%.,= dF Oqb dp( (’ - cos.2~) - k, 
We will break this up into two pieces, say 5, = 5 .A +sh a 

1 I ’ where 5, is 

independent of ;Y 

The solution for ~7 1s written easily by inspection. 

3: 3 w&d*‘) - k;(+-40) 

5 FrCcbj&e) 

The constant k, must be chosen so that F 
r 

is periodic, and thus 

bounded. That is. we must have Fr(+j+ 2-r; +a 1 = 0, and therefore 

.1-k, = F(qb xx; c$J 

i -- .- 2. $ A+ 
9 

(4, pZ& 

This gives us the first order tune shift arising from perturbations in 

the quadrupole fields. 

/J*“” = rk, = ~$ 4 + E.QJ ($1 p*W (7bj 



as 

The differentiai equation For 5 b 
I I 

( 5 -+ ;rl 2) 3; = - $ CPS 2‘1 

could be solved by integrating along a traJectory and adding an 

appropriate null space function to make the solution periodic. dS we5 

done in the last section. We shall short circuit this process and Just 

write the final. easily verified answer. 

q4.eLl-c 

SF=- ’ 2 3Yk znc, s clNct, I T;,, 2 [Y-c qd- 4) - in-q 

The function is represented as a Lebesque-StieltJes integral with 

Pseudo-length dF(Q)i. Periodicity is confirmed by using the boundary 

condition dF( #’ + Z-K) = dF(+)). 

Because H 7. = 0. the second order Eq. Clg) becomes 

ix, = I-I, + If, c , 5, 1 - 1-L 

As before, we factor out the J dependence explicitly and define 

s, ‘i JS.~CY,~I ) Kp Jk,o,+) 

Because k, is a constant. the second order differential equation gets 

rewritten a5 
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Consider solving this by the method of integration along orbits. 

The number k 1 must be chosen to eliminate unbounded growth of sz The 

troublesome term comes from the combination of circular functions in 

both h, and s,. 

tcfm 
I" 

ah, c _ G, ?+L 
'Dv >' &G 

-1 C 
2r*‘*1 LTV $- J%;;L > [z s:n 2y s:n2(Yt3(qL+nz)) 

+ d- 2cas-zy CAY-L (y +zq$Q)- c*)-j 
JF/Sd 

J 

$!C?iT 
= .- slv, '?qw d I=(#') ccJr14+'-+ -=)I 

cd 
a 

Applying Eq.i4) produces the growth term,s2 b 4:2x sz”wN = - S;h :,y ~F~++&~(+I-~~~)~ - kJ+ - 6,) 
That this could grow indefinitely is demonstrated easily by noting that 

the integrand is invariant under the diagonal translation +‘+& + 276, 

#9’-, +‘I + 2r. Because of this, s’~(Y;&)~ +2rrn) = i-i. s~(Y,&~ +~Tc). To 

eiiminate the growth we must make s: periodic by choosing 



cbTf+- II7 

bcka=- s;,‘2rti $dFW fdF(b’) CGS zd(+‘- 4”- ox ) t&i 

We note in passing that 

A+” = + z= 1<, (Bb) 

For completeness, we shall write the the full differential 

equation for sl. 

d -t-a 

IQ~, = - ,$:pT; J,dw c-es .Y(&+--i-L) 
9 

4+27C 

dF 
+ 4in’2n3( + kI + )S 

dF&‘) cos +’ .+ 3 (6-4 - in ,I 

+ 2 LPF 
4 

+ 
Q-U sin 2~ - k, 

The solution of this is 

s, = s: .-I- -s: .+ s; + Lnc (Y- +i) 
b”+ ‘LX 

sb- ’ 
1- sin 2-d J$d,,“, -+ k,dqY)~ 4Fc4’) cc5 L~‘+zJ(+‘-h-x)] 

u 

s; = 2 j:Pid") Fr (4") 5T?l 2 (Y t 9@"- +l) 

6 
where func is chosen to make s,periodic. 
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We now want to compare oup results to those of Courant and Snyder 

(Eq.4.37). Written in DUT notation, their expression for the perturbed 

tune is given below. 

CArp - ccc cc =. ,- ', 0) 

+ E-2 . :r-lp.~~~-,:~~~/-~l/,s~~~!2~ -(&p)) 

0 6" 

4- OCE') 

where 2x7J = ,u,,, and y = 2~($ + A#’ + AJJ’=‘+ * * - ). To make the 

comparison. we must expand cos r- cosp, to second order. 

cJJ3-s 
y- 

ca’bG = - 1~ s,‘v, l.rrv’ * Av cl1 

- ‘2R 5 I’YI 273 ’ &3(” r + coszJ-tJ.(2n *ll”‘JZ 

i- w (2) 

We can already identify the first order term using Eq. (7). The second 

is given by the following. 

- 2-,3,&b+. &=’ - -& cas ~~71 - (2-n AZ)(“) = - 2-,3,&b+. &=’ - -& cas ~~71 - (2-n AZ)(“) = 

= Ei~~F(~//.)~~/~l,~~S2~(~‘-d”-n) - ccs 277311 = Ei~~F(~//.)~~/~l,~~S2~(~‘-d”-n) - ccs 277311 

0 0 ,I ,I Q Q 

i9) 
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where use has been made of the sine product Gormuia. it is easily 5een 

that the terms involving COP 2.7~3 on both sides of this equation ape 

identical 

In zrr 

- EL ccy In21 s 5 JF (A”) di= (+‘) 
$A”= L, AL&” 

= -+ c/c% 2nd [c Fh7;o)Ia 

‘= -+- cc-5 .2T(+ (2-K &Py- 

incorporating this into Eq.(9) yields the result 

lJ-( 2-n 

-2x-j.; 2nd .Au”‘= c* s 5 d/=(+““)dF(+‘) ecs w(&&‘- -ri) (10) 
A”= c dI&f’ 

This is equivalent to our previous result provided that the 

doubie integral in Eq.ii0) is half that in Eq. (EJa). That demonstration 

is easy. First note that 

Then, all that is needed is the following line of development 



,277 cd “+ 2-n 

J $ &z o 
a ‘, 2~ dF(f’) d F (+’ ) cia w (CA ‘- &- TC ) 

= 1<:, o 1;: bdl=(f’) dF(c+‘) os~~(&‘i+/‘+--n) 

2-q ” 
J 5 P = dFCqJY) dr=-Td’) tir12)(+“-+‘+x) 
dd’zo @“lSo 

zn 
= 

s 5 
zn d!=(gjw)dF(+/) coszzi ~y3’&‘k ‘) 

&‘;, dL+;” 

34 



35 

3.3 Sextupoles and octupole~ with arbitrary harmonics 

We consider now a Hamiltonian with arbitrary sextupole and 

octupole terms. 

Ii = 14, t E r-l, + $ E.= I-/, 

I-c, = .D J 

b-t, ~= fl(+;, J3kLs;u-+ = Q (41 J""i$ 5;~bl f - -$ s;&) 

z p L, (y#) 

l-f, = 13C4) Jzsr.~4~ 

= n(4~J’(~-tcos2~+$cosLfY) 

The transform equations will be solved by expansion in eigenfunctians - 

-- that is. Fourier decomposition. 

/I(+) = x ati ~2’~ , ‘a-* = .a^, 

B&J = CM b, eLMd , hsm = bC 
VW 

L7p,#q = > h,,m e~~~4 +pr) 
‘M 

) L/,2 
Ii- ) P 

G, ,L: 
4; --m -P = ;n^ P 
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The on ly nonvanishing components of h, and ii, ape 

lo I ; m If’ 
= k3a,/Ei , h,;,,,, = =F a, l8i 

h =;m, 0 = 3b, /5+ , )l,;,,,.kl = - b, lq 

h = 
2jM;kLI b, /I6 

(ii) 

The first order equation is 

;b +-‘7-q-D) SljlkP + K,., = H,.,, 
’ P > 

We must choose K,.,oc:= H,, 
, O@ 

= 0. We shall also assume that no 

resonance terms dPe important, 50 that m+Yp vanishes only for m=p=O. 

Therefore, K I ;nl P 
= 0 for all m,p, or more succintly 

K,=o. 

312 
if we define S 

‘i”r 
ZJ 5 ,;m 

P 
I then the nonvanishing components are 

s 3 a- 
1 j",fl = 'F 3 Mf3 

S I am 
r;m,r = -cizrn 
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Going to second order, we must consider the equation 

i(~-e,yS,;~~ + K=,,,, = I+,.r,,,, + {HI Y &!L 
I P I J P 

The Poisson bracket is evaluated using Eq. (5) 

t fl, Jlhmp = { J-h, , J?, } ;* P 

= i + J=<$;p”-p”) h,,,+ g,;,.+~ 
JP 

= “? J’ Z &$-$I/ h,jm;p- h,;,+~ 
CMlP> 

Again, proJecting cut the average term gives us K, 

ti 2joc 
= J’[&* - 3 Fp y&+ hrnp 1’ 1 

Note that we have used 
34 

f~,,-~- = h A little Further evaluation, 
> P r;nl,p ' 

using Eq’s. (11) leads to 

IS 1%12 
LjDC = 2 L - 16 7, 

+ ‘l$ 5 ( m%:vz + &) ld 
i-n= I 
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Nhen b. =O this expression agrees with Eq. (S.&j of Cole i1969). One 

special cae.e is worth mentioning. Suppose that for some :a:, all 

I a m: = la:. Then the sum can be done using 

cot nx ‘- q$ + %q ,ZJL’ 
-1 

The result is 

k = 2; ce $A0 A..'= ($ UATizJ +.$ cot 3773) 
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4. REMARKS 

Chief among the questions associated with any perturbation theorg 

is that of convergence. As the Lie series is calculated to higher order 

in E:. larger harmonics in 5’ are pulled into the generating function 

and, ar a consequence, into the clothing transformation. If the series 

converges, then the magnitudes of these terms should decrease rapidly 

with increasing order so that. for example, a Fourier spectrum of the 

orbit would show only a few dominant frequencies. In general, however, 

the interval of convergence in & or J will be finite. Near its 

boundary all the higher order terms become important and the spectrum 

would be broadband. This is precisely the behavior one has come to 

expect in approaching chaotic regions of phase space. It is tempting tc 

speculate that divergence of the Lie series and passage through the 

last KAM boundary coincide. Unfortunately, the situation is mope 

complicated. Dewar (1978) has constructed examples in which the Lie 

transform is well defined and leads to integrable orbits past the 

convergence interval of its power series expansion. 

A second issue. not unrelated to the first, is the ambiguity 

inherent to setting up a problem with several important nonlinear 

terms, within a single parameter perturbation theory. The naive* 

“natural” ordering blindly associates higher powers of J with higher 

powers of E, usually in the combination EJ ,/-a 
This is not 

necessarily the best for all problems. There may be instances in which 
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it would lead to a divergent Lie series whereas restructuring the 

problem --- changing the association of multipoles with powers.of f?; 

perhaps even combining several multipoles into a single power of E --- 

would produce a convergent series. One ultimately would like to get 

around the problem by generalizing to a multi-parameter Lie 

transformation. 

At any rate. setting up problems correctly and interpreting the 

results will, as always. require judgment; these tasks cannot be 

absorbed into the formalism. The perturbation series associated with 

most nonlinear problems in fact almost always diverges, and yet their 

finite partial sums generally provide useful (in the eyes of the 

beholder) information. (Perhaps we should think of the Lie series as 

“asymptotic” in some sense?) 

The power of the Deprit-Hori-Kamel algorithm lies in its ability 

to be automated easily. The examples done for this memo do not 

sufficiently demonstrate its usefulness. We plan to exercise the methoc 

moTe vigorously and to write programs that apply it to moPe realistic 

problems in four dimensional phase space. 
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